首页> 外文OA文献 >Multi-level genetic algorithm for the resource-constrained re-entrant scheduling problem in the flow shop
【2h】

Multi-level genetic algorithm for the resource-constrained re-entrant scheduling problem in the flow shop

机译:流程车间资源受限的重入者调度问题的多级遗传算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The re-entrant flow shop scheduling problem (RFSP) is regarded as a NP-hard problem and attracted the attention of both researchers and industry. Current approach attempts to minimize the makespan of RFSP without considering the interdependency between the resource constraints and the re-entrant probability. This paper proposed Multi-level genetic algorithm (GA) by including the co-related re-entrant possibility and production mode in multi-level chromosome encoding. Repair operator is incorporated in the Multi-level genetic algorithm so as to revise the infeasible solution by resolving the resource conflict. With the objective of minimizing the makespan, Multi-level genetic algorithm (GA) is proposed and ANOVA is used to fine tune the parameter setting of GA. The experiment shows that the proposed approach is more effective to find the near-optimal schedule than the simulated annealing algorithm for both small-size problem and large-size problem.
机译:可重入流水车间调度问题(RFSP)被认为是NP难题,引起了研究人员和业界的关注。当前的方法试图在不考虑资源约束和重入概率之间的相互依赖性的情况下最小化RFSP的有效期。通过在多级染色体编码中包含相关的重入可能性和产生方式,提出了多级遗传算法。修复算子被并入多级遗传算法中,以通过解决资源冲突来修改不可行的解决方案。为了最小化制造周期,提出了多级遗传算法(GA),并使用ANOVA对GA的参数设置进行了微调。实验表明,对于小问题和大问题,所提出的方法都比模拟退火算法更有效地找到了近最优调度。

著录项

  • 作者

    Lin, D; Lee, CKM; Ho, W;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号